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Note 

A Simple Rezoning Technique for Use 
with the Flux-Corrected Transport Algorithm 

1. INTRODUCTION 

In the last few years flux-corrected transport (FCT) algorithms for Eulerian hydro- 
dynamics have attracted attention because they are more accurate and exhibit less 
numerical diffusion than several alternative Eulerian methods [l-3]. Successful 
two- and three-dimensional hydrocodes have been written using FCT [4, 51. Because 
many physical problems of interest require rezoning, it is fortunate that the basic one- 
dimensional routines, developed by Boris [6] and used in our code SAGE [7], allow 
for the possibility of a general rezoning, in which the grid lines are moved with what- 
ever velocity the user specifies. 

One application of this rezoning facility, in which the E x B drift velocity is used 
to follow magnetic flux surfaces, has been described by Anderson [8]. In our work we 
are interested in following the fluid mass, and we shall describe a method of obtaining 
an appropriate grid velocity. This velocity is approximately but not identically equal 
to the fluid velocity and is obtained from an algorithm which integrates mass along 
grid lines. We shall show how the FCT treatment of a one-dimensional test problem, 
first reported (without rezoning) by Colombant and Gardner [9], may be greatly im- 
proved using our rezoning prescription; we shall also show how our technique may be 
adapted to two dimensions. 

2. THE DYNAMIC MASS REZONING TECHNIQUE 

The FCT routines published by Boris [6] accept as input the old “densities” 
pin (which may represent momentum and energy as well), velocities uin, source terms 
Sin and grid points rin, defined at time t for 1 < i < N, and new grid points rT+’ 
defined at time t + At. The routines return the new densities p;+l at time I + At 
defined at the new grid points. Built into these routines is therefore a rezoning facility; 
the question to be addressed is how to select the r;+l. Expressed alternatively, we must 
determine the grid velocity U,- where 

~,“i = (ry+l - ri”)/A t. (1) 

In the examples of Refs. [l-3, 61, U, is set to zero. To make the grid behave in a 
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Lagrangian manner the obvious choice is to set U, equal to the fluid velocity u, but the 
straightforward application of such a prescription leads to difficulties. 

The basic stability requirement for the FCT routines is that grid points and cell 
boundaries should not cross; this is ensured by selecting a dt satisfying, for all i, 
the Courant-Friedrichs-Lewy (CFL) condition [lo] 

where 

Lit < O.Sh(flrJl ui I), (2) 

dri = min{r,+r - ri , ri - ridI} (3) 

and X is a parameter less than unity to which the results of calculations are generally 
insensitive. A similar restriction to (2) arises from the sound speed [l]. If the grid 
points are free to move and for some reason one of the hi tends to zero, Eq. (2) will 
cause the time step to tend to zero and the calculation will fail unless there is some 
restoring mechanism. This is most likely to occur at a discontinuity in pressure. 

We use Fig. 1, which illustrates possible FCT configurations at time steps 0 and n, 

i - % i + ‘12 

i-l i i+l 

i - ‘12 i + ‘12 

STEP n: + I @I@ 
i-l i i+ 1 

FIG. 1. FCT grid configuration initially and at step n. 

to demonstrate why FCT lacks such a mechanism. All quantities of importance are 
defined at the grid points which are indexed by the integer i; interfaces and subsidiary 
quantities are defined at half-integer points i + +. At step n the points i and i + 1 
have come close together. The pressure gradient at the point i is given by [6] 

VP, = (Pi++ - Pi-+Mri++ - ri-+I 

= (Pi+l - Pd(ri+~ - ri-d 

(4) 

(5) 

because Pi,* and ri++ are defined as 

pi++ = w, + Pid (6) 

ri++ = Hri + ri+d. (7) 



434 CRAXTON AND MCCRORY 

We use a predictor step to calculate all variables at the half-time IZ + 4. In the correc- 
tor step all quantities in (4)-(7) have the superscript n + &. 

From (5) we see that there is no direct coupling between VPI and quantities defined 
at the point i; nor is there a direct dependence of any physical quantity on the crucial 
distance ri+l - ri : the density, for example, is sensitive instead to the distance between 
two interfaces. Because FCT defines interfaces as being midway between grid points, 
two grid points may come infinitesimally close without generating a zero volume. 

Another point to note is that the mass actually enclosed between two adjacent 
interfaces does not necessarily remain constant, even if the fluid moves with zero 
velocity relative to the interfaces. This is a consequence of the nonlinear antidiffusion 
stage of FCT during which maxima may be “clipped” [2]. 

Our new technique is designed to ensure that the grid velocities lJgi are chosen as 
far as possible in an exactly Lagrangian sense. To effect this we introduce new interface 
positions yi+* (0 6 i < N), which from (8) are equal to the ri++ only if the grid is 
uniform. y+ and yN++ always coincide with the physical boundaries, whether free or 
fixed. 

Initially the grid is set as 

f-i0 = XYLD + ~io+d 1 <i<N, (8) 

where the initial interface positions yip,, may be arbitrarily spaced, and the masses 
summed up to the (i + +)th interfaces 

Mio,l,z = ‘f Pko Av,’ 
k=l 

are calculated and stored. (Equivalently, the products plea AV,O may be stored.) 
A Vko is the volume bounded by the interfaces y& and yE++ . 

On each subsequent time step, after the fluid variables have been integrated to step 
n, we calculate new volumes AVin from 

M,o+l,, = i prc*AV,c”, (10) 
k=l 

and hence new interface positions yi”,+ . On the next step new grid positions 

rin+l = Hv?+l~2 + Ylh), 1 <i<N, (11) 

are input to the FCT routines. (The summations in (9) and (10) start with k = 1, 
but it is equally possible to scan backwards from k = N.) 

From the definitions of the yT++ it is impossible for the grid points ri” to cross: 
for example, for shock problems with density discontinuities of order (y + l)/(r - 1)) 
where y is the specific-heat ratio, the spacing between two interfaces never falls 
below a fraction (7 - l)/(r + 1) of its initial value. 

It may be noted that the interface positions always lag the density by one time 
step, because the rT+l are calculated before the fluid quantities are advanced from 
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step n to step n + 1. We have tried using a predicted pn+l in (10) to counter this, but 
have obtained almost identical results which do not warrant the additional computa- 
tional complexity. 

3. APPLICATION TO A SHOCK WAVE TEST PROBLEM 

To illustrate the need for and the application of our new technique, we consider 
the same problem as was treated by Colombant and Gardner [9]. It is the self-similar 
solution of a shock wave propagating in a background of exponentially increasing 
density [l 11, described by the standard one-temperature fluid equations. 

The configuration is shown schematically in Fig. 2. For a specific heat ratio y of 2, 
the position of the shock is given by 

i l 4 
x 

FIG. 2. Schematic representation of the density profile in the exponential atmosphere shock 
problem. 

and the density is given by 

P(x) = PO ev [?I, x z x, ; 3p(x,)(1 + 2&5/z, x < xF , (13) 

where 

(=(X,-x)/d. (14) 

At time t = to the shock is at x = x0 and the fluid is cold for x > x0 ; p. is the un- 
disturbed density at x = x0 and d is the scale length. 

The result of using a uniform grid for this problem is shown in Fig. 3. The grid has 
25 points per scale length d and 130 points in total. Calculated and analytic curves 
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are superimposed for four successive times. Referring to the initial profile (a), the 
extent to which the initial shock deviates from the vertical provides a direct indication 
of the resolution of this grid. A result very similar to Fig. 3 was obtained by Colombant 
and Gardner [9]. Generally the agreement between calculated and analytic solutions 
is good, except at the very sharp peak where there are insufficient grid points for 
adequate resolution: the analytic solution drops to 82 % of the peak value just one 

d 

FIG. 3. Analytic and calculated density profiles at four successive times, on a uniform grid. 

- 
0.76 

X (cm) 

grid point to the left of the peak and to 69 % two points away. This almost singular 
feature makes this particular problem a severe test for any code. 

Using the rezoning technique, up to three times the resolution may be obtained at 
the peak (because for y = 2 the density jump is 3), and the result for the same problem 
is shown in Fig. 4. The improvement is dramatic. 

A similar result could have been achieved without rezoning by taking three times 
as many grid points. This would have required nine times the computer time, and 
extra storage as well. In contrast, the run with rezoning took just 55 ‘A extra computer 

0 
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FIG. 4. Analytic and calculated density profika at four successive times, with rezoning. 
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time, partly due to the overhead imposed by the zoning routines (13 %), but mostly 
because smaller time steps were required (37 %). The time step, chosen from the CFL 
condition (2) modified to include the sound speed, did not decrease by a factor of 3 
because it was not determined at the shock front. 

It is probable that even greater resolution could be obtained by an adaptive gridding 
procedure to overc8mpress the zones in the shock. We have not attempted this as our 
technique is easy to implement and performs more than adequately. 

It is interesting that the FCT routines, optimized for a uniform grid [6], should 
perform so well on a nonuniform grid. In order for this to occur it would intuitively 
appear to be necessary that the grid spacing vary smoothly [6], which is indeed the 
case to the left of the shock. The point may also be made that, since the grid and 
fluid velocities are almost equal, the diffusion and antidiffusion terms almost cancel 
El- 

We have also obtained very similar results [7] for the spherical blast wave similarity 
solution described by Zel’dovich and Raizer [ 111; this confirms that our technique is 
not dependent on a particular choice of coordinate system. 

It is interesting to note that FCT does not need an explicit artificial viscosity to 
treat shocks, in contrast to several other numerical schemes. The reason for this is 
that the nonlinear flux-correction stage of the FCT algorithm, in requiring that no new 
maxima are generated, damps the numerical oscillations in velocity that would other- 
wise grow, thereby ensuring the necessary conversion of kinetic energy into thermal 
energy. Use of the total energy equation ensures that energy conservation is not 
violated. Colombant and Gardner [9] found that FCT schemes not based on the 
total energy equation performed poorly in comparison, even with the addition of an 
artificial viscosity. 

4. EXTENSION TO TWO DIMENSIONS 

Our technique is also applicable to two dimensions, although the grid cannot move 
in a truly Lagrangian manner: it is impossible to apply the method to every row and 
column and maintain an orthogonal mesh. Our code SAGE [7] supports Cartesian, 
cylindrical, and spherical geometries, and uses the basic hydrodynamic routines of 
Boris [6]. Typical zoning schemes of interest are shown in Fig. 5; the orthogonality 
requirement imposes upon us a maximum of two grid velocities, one for each direc- 
tion. 

In two dimensions the interfaces yi++ are generalized to two sets of interfaces, 
Ri++ and Zjti (1 < i < M, 1 < j < N), one along each orthogonal direction, as 
illustrated in Fig. 5. The notation is applicable to cylindrical geometry, but the method 
is general. The masses il4,+, of Eqs. (9) and (10) are replaced by two sets of masses 
M$ and A4& ; Mj$ is the initial mass between interfaces r = R, and r = Ri++ , 
accumulated from a subset of grid lines parallel to the r axis, i.e., 
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M& is defined similarly. In general we could choose any weighted combination of 
these grid lines, but in practice it is probably sufficient to consider just two possibilities: 

(a) one grid line only in each direction (jr = j,); 
(b) a sum over all grid lines in each direction ( j, = 1, j, = N) 

Note that the zoning will be affected if there is significant perpkndicular mass flow 
into the selected lines, because the mesh will not then move with the average velocity 
parallel to these lines. In the example presented below this does not arise. 

R M + l/2 

ttiiii i 
R R I+ I+ l/2 

FIG. 5. Interfaces for (a) cylindrical and (b) sphel 5cal geometries as used in SAGE. 

We consider a problem, for which we are unaware of any analytic solution, where 
two strong shocks collide with each other in a cylindrical con6guration; this is set up 
by supposing that the density is initially uniform everywhere (PO = 0.213 g/ems), 
while in the cylindrical region (0 < r < r,, , 0 < z < q,} the temperature (To = 
1 eV) is much lower than everywhere else (T1 = 973 eV). This cylinder will be imploded 
by the high surrounding pressure. The simulation region is taken as (0 < r < rl , 
0 < z < zl}, with rl = z1 = 1200 pm and r. = z, = 800 pm, and the zoning is 

RG. 6. Density as a function of r and z for the colliding shocks problem on a 20 x 20 grid. 
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initially uniform. The ion mass is 2.5 times the hydrogen mass and y = 5/3. This 
problem was suggested by Morse and Verdon [12]. 

Figure 6 shows a plot of p as a function of r and z after 1.55 nsec (55 time steps). 
Along the lines t = 0 and z = 0 we find one-dimensional shock solutions, with 
density jumps of 2.7 for the plane shock moving in the -z direction and 3.5 for the 
converging cylindrical shock moving in the --r direction. Choice (a) above was used, 
with the axes as the selected lines (jr = j, = l), and it may be seen from Fig. 6 how 
the resolution is improved in the regions of interest by the rezoning. Even so, 20 points 
in each direction is clearly insufficient. Nonetheless, the qualitative result that a small 
region of high density is formed where the two shocks collide is apparent from the 
figure. The peak is 7.6 times the initial density. 

0 
FIG. 7. Density as a function of r and z for the colliding shocks problem on a 40 x 40 grid. 

The problem was refieated using a 40 x 40 grid. Figure 7 is the equivalent of Fig. 6, 
and is drawn with the same vertical scale; the improvement due to the finer zoning is 
apparent. Here the jump ratios are 4.2 for the plane shock (slightly overshooting 
the analytic value of 4.0), 4.8 for the cylindrical shock, and 10.3 for the central peak. 

The extension of our technique to two dimensions is of limited applicability because 
we presuppose that we may use an orthogonal coordinate system which in some general 
sense matches the contours of the physical problem; it is difficult, for example, to 
conceive of an Eulerian rezoning method that will treat an imploding spherical shell 
on an orthogonal (r, z) grid. 

5. CONCLUSION 

We have shown that by a simple modification of the published FCT routines it is 
possible to significantly improve the treatment of a one-dimensional blast wave test 
problem with a minimum increase in computational effort. We have also shown that 
our new technique may be applied in two dimensions to a class of problems where the 
coordinate system is reasonably suited to the geometry of the physical problem being 
solved. 

581/33/340 
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